
An introduction to ODD and ODD Chaining

Lou Burnard

1/32

Taming the TEI Tiger: an ODD story

Customising the TEI is a way of adapting its powerful general
purpose architecture to the more constrained and limited
objectives of a specific project.

TEI customizations are expressed (of course) in TEI ...
... using a special TEI customization which we call ODD

2/32

Why might you need an ODD?

You are planning to produce valid XML resources ...

so you will need to define an XML schema to describe them
You need to provide documentation about

the semantics of your XML schema
constraints, usage notes, examples

You need to keep the schema and the documentation in step
You want to share the results

with others
with yourself, long term

you don’t want to reinvent the wheel

This applies whether or not you are using the TEI!

3/32

ODD : the basic notion
One Document Does it all

A special XML vocabulary (defined by the TEI) for specifying....

schemas
XML element types independent of a particular schema
language
public or private groupings of such elements
patterns (macros)
classes (and subclasses) of element
data constraints

And also for specifying references which can pull into a schema

named components from the above list
objects from other namespaces

All closely integrated with a set of traditional document markup
elements

4/32

Basic ODD components for schema definition

<schemaSpec> Defines and identifies a schema

<elementSpec> Provides some or all of an element specification,
new or existing

<elementRef> References an existing element specification

<classSpec>, <classRef> Likewise, for classes

<attDef>, <attRef> Likewise, for attributes

<moduleRef> References an existing ‘module’ i.e. a group of
predefined elements and attributes, entirely or
partially

5/32

A simple example

Our markup uses a <book> element, which contains a mixture of
<para>s and <picture>s. We have never heard of the TEI and we
don’t want to use it. Likewise namespaces.

<schemaSpec ns="" ident="bookSchema"
start="book">
<elementSpec ident="book">
<desc>Root element for a very simple schema</desc>
<content>
<alternate maxOccurs="unbounded">
<elementRef key="para"/>
<elementRef key="picture"/>

</alternate>
</content>

</elementSpec>
<!-- ... continues on next slide -->
</schemaSpec>

6/32

A simple example, contd.

<!-- ... contd --><elementSpec ident="para">
<desc>paragraph of running text</desc>
<content>
<textNode/>

</content>
</elementSpec>
<elementSpec ident="picture">
<desc>empty element pointing to a graphic file</desc>
<content>
<empty/>

</content>
<attList>
<attDef ident="href">
<desc>supplies the URI of the object pointed at</desc>
<datatype>
<rng:data type="anyURI"/>

</datatype>
</attDef>

</attList>
</elementSpec>

7/32

So what?
We have all the information needed to build a schema in
RELAX NG, W3C schema, or DTD language by a simple XSLT
transformation
We can also extract documentary fragments (e.g. the
descriptions of elements and attributes)

TEI provides a special element for the latter purpose:

<specList>
<specDesc key="para"/>
<specDesc key="picture"/>

</specList>

which would generate something like

<para> paragraph of running text
<picture> empty element pointing to a graphic file

inside our running text

8/32

Defining a model class
In the real world, the elements that can appear inside a <book> are
likely to be many and various. It’s convenient therefore to have a
way of talking about all of them: in ODD, we say that all such
elements are members of a model class.
We use the <classes> element to record an element’s membership
in a class:

<elementSpec ident="para">
<!-- ... -->
<classes>
<memberOf key="bookPart"/>

</classes>
<!-- ... -->
</elementSpec>

And for completeness, here’s a definition for the bookPart class.

<classSpec ident="bookPart"
type="model">
<desc>the elements of this class all represent top-level parts of a

book</desc>
</classSpec>

9/32

Using a model class

Rather than say that a <book> contains <para> elements (and
other things), we can now say that it contains members of the
bookPart class.

<elementSpec ident="book">
<desc>Root element for a very simple schema</desc>
<content>
<classRef key="bookPart"
minOccurs="1" maxOccurs="unbounded"/>

</content>
</elementSpec>

(When we realise that books can also contain <list>s this will save
time!)

10/32

Defining an attribute class
In the real world, it’s also likely that several elements will have the
same attributes. It’s convenient therefore to define them once only:
in ODD we say all elements with some attributes in common are
members of an attribute class, which we define like this:

<classSpec ident="pointing"
type="atts">
<desc>elements of this class all have an href

attribute</desc>
<attList>
<attDef ident="href">
<desc>supplies a URI for the object pointed at</desc>
<datatype>
<rng:data type="anyURI"/>

</datatype>
</attDef>

</attList>
</classSpec>

11/32

Controlling attribute values
Attribute values can be constrained just by referring to an
externally defined datatype such as anyURI or ID (these are
W3C defined standards)
We can also supply and document our own list of required or
recommended values using the <valList> element

For example...

<classSpec ident="bookAtts"
type="atts">
<desc>this class defines the attributes that can appear on any element

inside a book</desc>
<attList>
<attDef ident="xml:id">
<desc>provides a unique identifier for an element</desc>
<datatype>
<rng:data type="ID"/>

</datatype>
</attDef>
<attDef ident="status">
<desc>indicates the correction status of this element </desc>
<valList>
<valItem ident="red"/>
<valItem ident="green"/>
<valItem ident="unknown"/>

</valList>
</attDef>

</attList>
</classSpec>

12/32

What else might you want to say about your elements?

Additional glosses and descriptions, perhaps in different
languages

Usage examples
More sophisticated constraints

complex content models
contextual dependencies

Plus other documentary features : versioning, cross references,
ontological mappings ...

13/32

Alternative descriptions and glosses

<elementSpec ident="para">
<gloss>paragraph</gloss>
<desc>marks paragraphs in prose.</desc>
<desc xml:lang="zh-tw">標記散文的段落。</desc>
<desc xml:lang="ja"> 散文の段落を示す． </desc>
<desc xml:lang="fr">marque les paragraphes dans un texte

en prose.</desc>
<desc xml:lang="es">marca párrafos en prosa.</desc>
<desc xml:lang="it">indica i paragrafi in prosa</desc>

<!-- ... -->
</elementSpec>

14/32

Usage examples

Documenting an XML schema requires the inclusion of examples in
XML. If your documentation is also in XML, you need to be a little
devious. There are three possible approaches:

hide everything within a CDATA marked section

Escape everything using entity references

Use a different name space

The last has the great advantage that you can validate your
examples against an XML schema

15/32

Examples

<eg><![CDATA[<p>A paragraph</p>]]></eg>

<eg>
<code lang="XML"><p>A paragraph</p></code>

</eg>

<egXML
xmlns="http://www.tei-c.org/ns/Examples">
<p>A paragraph</p> </egXML>

16/32

Defining a content model
The <content> element can contain

Nothing at all <empty/>
References to other elements <elementRef>
References to classes of element <classRef>
Alternations of the foregoing <alternate>
Sequences of the foregoing <sequence>

Attributes @minOccurs and @maxOccurs can be used to control
repetition
For example:

<content>
<alternate>
<elementRef key="para" minOccurs="2"
maxOccurs="unbounded"/>

<elementRef key="bob"
maxOccurs="unbounded"/>

</alternate>
</content>

17/32

Is your journey really necessary ?
The TEI defines elements very like yours. Why not use the TEI?

<schemaSpec source="http://www.tei-c.org/release/xml/tei/odd/p5subset.xml"
start="div" ident="teiBook">
<elementRef key="div"/>
<elementRef key="p"/>
<elementRef key="graphic"/>
<elementRef key="figure"/>
<moduleRef key="tei"/>

</schemaSpec>

The <moduleRef> here provides definitions for the TEI
infrastructure, notably the classes and datatypes used throughout
every TEI schema. Apart from that we just need to specify the TEI
elements we want to use, by means of an <elementRef>.

The @source attribute indicates where the referenced specifications
are to be found

18/32

Schematron constraints
An element spec may also include one or more
<constraintSpec> elements, which contain additional
constraints of any kind, expressed in the ISO Schematron
language
In TEI we use these to express additional semantic or
co-occurrence constraints that cannot be expressed in any
schema language
Not all XML processing systems take notice of these (but
oXygen does).

<elementSpec ident="div"
module="teistructure" mode="change">
<constraintSpec ident="div"
scheme="isoschematron">
<constraint>
<s:assert test="@type='prose' and .//tei:p">

a prose div should contain at least one paragraph</s:assert>
</constraint>

</constraintSpec>
</elementSpec>

19/32

ODD Compilation
A single ODD may contain two types of object:

an explicit specification (e.g. an <elementDecl>), partial or
complete

a reference to such a specification

A single ODD may combine two or more partial specifications for a
given object.

In a compiled ODD,

all references have been resolved, and replaced by the
declarations concerned

all partial declarations for the same object have been resolved

The @source attribute always indicates a compiled ODD

20/32

Using a compiled ODD
A compiled ODD can serve as the basis for further modifications.
Starting with a compiled version of the TEI-bare schema...
...we could suppress the <head> element:

<schemaSpec ident="Bare-minus"
source="tei_bare.compiled.odd" start="TEI">
<moduleRef key="tei"/>
<moduleRef key="header"/>
<moduleRef key="core" except="head"/>
<moduleRef key="textstructure"/>

</schemaSpec>

... or we could add the contents of the module gaiji

<schemaSpec ident="Bare-plus"
source="tei_bare.compiled.odd" start="TEI">
<moduleRef key="gaiji"
source="http://www.tei-c.org/release/xml/tei/odd/p5subset.xml"/>

<moduleRef key="tei"/>
<moduleRef key="header"/>
<moduleRef key="textstructure"/>

</schemaSpec>

Note that we can only suppress or add items already supplied by
the compiled ODD specified in the @source attribute.21/32

ODD Chaining use case

For the ELTeC we need to maintain two or three different schemas:

A very constrained version of the TEI Header, common to each
level

Basic markup at level 0, and nothing else

Markup at level 1, which is a superset of level 0

Markup at level 2, which is also (currently) a superset of level 1

ODD chaining is the answer

22/32

ODD chaining

See https://github.com/
COST-ELTeC/Schemas/
tree/master/ODD

we define a base ELTeC ODD
which declares everything
required for the union of
each of the three schemas,
and supplies some general
constraints

we compile this base ODD to
create a TEI library,
analogous to the ”p5subset”
supplied with TEI P5

each ELTeC level is then
defined by a separate ODD,
which selects a subset from
that library

23/32

https://github.com/COST-ELTeC/Schemas/tree/master/ODD
https://github.com/COST-ELTeC/Schemas/tree/master/ODD
https://github.com/COST-ELTeC/Schemas/tree/master/ODD

Advantages of this approach

A single set of definitions, documented in one place, in one
way, and accessible to all

At the same time, any number of specialised and tightly
constrained subsets, appropriate to particular environments or
applications

Other use cases:

crowdsourcing applications with progressive enrichment

digitized manuscript collections combining edited
transcriptions with rich metadata

24/32

Types of ODD (1)

each box here represents :

an ODD
the schema derived from that ODD
the set of documents considered valid by that schema

TEI All contains every element (etc) defined by the TEI.

25/32

Types of ODD (2)

a ‘TEI subset’ provides only a
(possibly restricted) subset
of TEI All

a ‘TEI extension’ provides
some components which do
not appear in TEI All

The $1000k question: is my TEI
extension conformant?

26/32

The short answer

Yes, provided that...

(in the case of a subset) : your modifications generate a more
focussed schema, better adapted to your project, and
documentation more meaningful to your envisaged
community;

your documents are also still valid according to TEI All and
respect the semantics defined by the TEI conceptual model;

(for an extension) : non-TEI components are explicitly
signalled, for example by use of a different namespace, and
documented in your ODD, for example by using TEI classes, the
<equiv> element etc.

27/32

So what does it mean to be ‘TEI conformant’ ?

be honest : XML elements declared within the TEI namespace
must respect the existing TEI definitions for those elements
(e.g. <l>)

be explicit : an ODD is a very good way of keeping you honest.
Producing one requires you to document and make evident all
the changes you have made.

Validity of a document with respect to a TEI schema (TEI All, subset,
or extension) is a good sign – but it does not guarantee
conformance

The requirement to ‘respect the TEI-defined semantics TEI’ implies a
test that cannot be readily automated.

28/32

The limits of modification
Can you delete everything? you may not want <title> in your
text, but it is mandatory in the header

Can you add anything ? it may be convenient to add (e.g.)
elements from the Dublin Core to your header, even though
their semantics overlap with existing TEI elements

The purpose of these conformance rules is to make ‘blind
interchange’ simpler; but they don’t guarantee it.

Their goal is to allow a user to understand your encoding, but
not necessarily to force them to follow your practice blindly

See also What is TEI Conformance?
(https://journals.openedition.org/jtei/1777)

29/32

https://journals.openedition.org/jtei/1777

Useful links : Reference documentatio

For this talk (and others) visit my boasting page at
http://lb42.github.io
For authoritative reference information, consult the Guidelines!

« 22 : Documentation » in TEI Guidelines.
https://tei-c.org/release/doc/tei-p5-doc/en/html/TD.html

« 23 : Using the TEI » in TEI Guidelines.
https://tei-c.org/release/doc/tei-p5-doc/en/html/USE.html

30/32

http://lb42.github.io
https://tei-c.org/release/doc/tei-p5-doc/en/html/TD.html
https://tei-c.org/release/doc/tei-p5-doc/en/html/USE.html

Useful links : Tutorial materials

« Module 8: Customizing TEI » in TEI By Example
https://teibyexample.org/tutorials/TBED08v00.htm

«Customizing the TEI » What is the Text Encoding Initiative ?,
http://books.openedition.org/oep/692.

« One Document Does-it-all (ODD) » in Balisage Symposium on
Markup Vocabulary Customization
http://www.balisage.net/Proceedings/vol24/html/Viglianti01/BalisageVol24-
Viglianti01.html

« TEI Customization Primer » (Women Writers Project)
https://www.wwp.neu.edu/outreach/resources/customization.html

« ODD Chaining for Beginners »
https://teic.github.io/TCW/howtoChain.html

31/32

https://teibyexample.org/tutorials/TBED08v00.htm
http://books.openedition.org/oep/692
http://www.balisage.net/Proceedings/vol24/html/Viglianti01/BalisageVol24-Viglianti01.html
http://www.balisage.net/Proceedings/vol24/html/Viglianti01/BalisageVol24-Viglianti01.html
https://www.wwp.neu.edu/outreach/resources/customization.html
https://teic.github.io/TCW/howtoChain.html

Useful links: Background reading

« RELAX NG with son of ODD » (eXtreme Programming
Languages, 2004) https://ora.ox.ac.uk/objects/uuid:b337cb6d-
9e7b-4bbc-aa71-f0b9d12bb8de

« Reviewing the TEI ODD System » (ACM DocEng, 2013)
http://dx.doi.org/10.1145/2494266.2494321

32/32

https://ora.ox.ac.uk/objects/uuid:b337cb6d-9e7b-4bbc-aa71-f0b9d12bb8de
https://ora.ox.ac.uk/objects/uuid:b337cb6d-9e7b-4bbc-aa71-f0b9d12bb8de
http://dx.doi.org/10.1145/2494266.2494321

